Skip to main content

Exponential Weighted Moving Average Filter Matlab


Exponentialfilter Diese Seite beschreibt die exponentielle Filterung, den einfachsten und beliebtesten Filter. Dies ist Teil des Abschnitts Filterung, der Teil des Leitfadens zur Fehlerdetektion und - diagnose ist. Überblick, Zeitkonstante und Analogäquivalent Der einfachste Filter ist der Exponentialfilter. Es hat nur einen Abstimmungsparameter (außer dem Probenintervall). Es erfordert die Speicherung nur einer Variablen - der vorherigen Ausgabe. Es ist ein IIR (autoregressive) Filter - die Auswirkungen einer Eingangsveränderung Zerfall exponentiell, bis die Grenzen der Displays oder Computer Arithmetik verstecken. In verschiedenen Disziplinen wird die Verwendung dieses Filters auch als 8220exponentielle Glättung8221 bezeichnet. In einigen Disziplinen wie der Investitionsanalyse wird der exponentielle Filter als 8220Exponential Weighted Moving Average8221 (EWMA) oder nur 8220Exponential Moving Average8221 (EMA) bezeichnet. Dies missbräuchlich die traditionelle ARMA 8220moving average8221 Terminologie der Zeitreihenanalyse, da es keinen Eingabehistorie gibt, der verwendet wird - nur die aktuelle Eingabe. Es ist das diskrete Zeit-Äquivalent der 8220 erster Ordnung lag8221, die üblicherweise in der analogen Modellierung von kontinuierlichen Zeitsteuerungssystemen verwendet wird. In elektrischen Schaltkreisen ist ein RC-Filter (Filter mit einem Widerstand und einem Kondensator) eine Verzögerung erster Ordnung. Bei der Betonung der Analogie zu analogen Schaltungen, ist der einzige Tuning-Parameter die 8220time constant8221, in der Regel als klein geschriebenen griechischen Buchstaben Tau () geschrieben. Tatsächlich entsprechen die Werte bei den diskreten Abtastzeiten genau der äquivalenten kontinuierlichen Zeitverzögerung mit der gleichen Zeitkonstante. Die Beziehung zwischen der digitalen Implementierung und der Zeitkonstante wird in den folgenden Gleichungen gezeigt. Exponentielle Filtergleichungen und Initialisierung Das Exponentialfilter ist eine gewichtete Kombination der vorherigen Schätzung (Ausgabe) mit den neuesten Eingangsdaten, wobei die Summe der Gewichtungen gleich 1 ist, so dass die Ausgabe mit dem Eingang im stationären Zustand übereinstimmt. Nach der bereits eingeführten Filternotation ist y (k) ay (k - 1) (1 - a) x (k) wobei x (k) die Roheingabe zum Zeitschritt ky (k) die gefilterte Ausgabe zum Zeitschritt ka ist Ist eine Konstante zwischen 0 und 1, normalerweise zwischen 0,8 und 0,99. (A-1) oder a wird manchmal die 8220-Glättungskonstante8221 genannt. Für Systeme mit einem festen Zeitschritt T zwischen Abtastwerten wird die Konstante 8220a8221 nur dann berechnet und gespeichert, wenn der Anwendungsentwickler einen neuen Wert der gewünschten Zeitkonstante angibt. Bei Systemen mit Datenabtastung in unregelmäßigen Abständen muss bei jedem Zeitschritt die exponentielle Funktion verwendet werden, wobei T die Zeit seit dem vorhergehenden Abtastwert ist. Der Filterausgang wird normalerweise initialisiert, um dem ersten Eingang zu entsprechen. Wenn die Zeitkonstante 0 nähert, geht a auf Null, so dass keine Filterung 8211 der Ausgang dem neuen Eingang entspricht. Da die Zeitkonstante sehr groß wird, werden Ansätze 1, so dass neue Eingabe fast ignoriert wird 8211 sehr starkes Filtern. Die obige Filtergleichung kann in folgendes Vorhersagekorrektor-Äquivalent umgeordnet werden: Diese Form macht deutlich, dass die variable Schätzung (Ausgabe des Filters) unverändert von der vorherigen Schätzung y (k-1) plus einem Korrekturterm basiert wird Auf die unerwartete 8220innovation8221 - die Differenz zwischen dem neuen Eingang x (k) und der Vorhersage y (k-1). Diese Form ist auch das Ergebnis der Ableitung des Exponentialfilters als einfacher Spezialfall eines Kalman-Filters. Die die optimale Lösung für ein Schätzproblem mit einem bestimmten Satz von Annahmen ist. Schrittantwort Eine Möglichkeit, den Betrieb des Exponentialfilters zu visualisieren, besteht darin, sein Ansprechen über die Zeit auf eine Stufeneingabe aufzuzeichnen. Das heißt, beginnend mit dem Filtereingang und dem Ausgang bei 0 wird der Eingangswert plötzlich auf 1 geändert. Die resultierenden Werte sind nachstehend aufgetragen: In dem obigen Diagramm wird die Zeit durch die Filterzeitkonstante tau geteilt, so daß man leichter prognostizieren kann Die Ergebnisse für einen beliebigen Zeitraum, für jeden Wert der Filterzeitkonstante. Nach einer Zeit gleich der Zeitkonstante steigt der Filterausgang auf 63,21 seines Endwertes an. Nach einer Zeit gleich 2 Zeitkonstanten steigt der Wert auf 86,47 seines Endwertes an. Die Ausgänge nach Zeiten gleich 3,4 und 5 Zeitkonstanten sind jeweils 95,02, 98,17 bzw. 99,33 des Endwerts. Da der Filter linear ist, bedeutet dies, dass diese Prozentsätze für jede Größenordnung der Schrittänderung verwendet werden können, nicht nur für den hier verwendeten Wert 1. Obwohl die Stufenantwort in der Theorie aus praktischer Sicht eine unendliche Zeit in Anspruch nimmt, sollte man an den exponentiellen Filter 98 bis 99 8220done8221 denken, der nach einer Zeit gleich 4 bis 5 Filterzeitkonstanten reagiert. Variationen des Exponentialfilters Es gibt eine Variation des Exponentialfilters mit dem Namen 8220nonlinearem exponentiellem Filter8221 Weber, 1980. Es soll starkes Rauschen innerhalb einer bestimmten 8220typical8221 Amplitude filtern, reagiert aber schneller auf größere Änderungen. Copyright 2010 - 2013, Greg Stanley Teilen Sie diese Seite: Dokumentation Dieses Beispiel zeigt, wie Sie gleitende durchschnittliche Filter und Resampling verwenden, um die Auswirkungen von periodischen Komponenten der Tageszeit auf stündliche Temperaturablesungen zu isolieren sowie unerwünschte Leitungsgeräusche von einem offenen zu entfernen - Lochspannungsmessung. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters so, dass jeder Punkt gleich gewichtet wird und 1/24 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) / 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu werden zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahiert. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiterer gemeinsamer Filter folgt der Binomialexpansion von (1 / 2,1 / 2) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomial-Filter zu finden, falten Sie 1/2 1/2 mit sich selbst und konvergieren dann iterativ den Ausgang mit 1/2 1/2 a vorgeschriebener Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wählen Sie Ihre CountryDocumentation-Ausgabe tsmovavg (tsobj, s, lag) gibt den einfachen gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Ausgabe tsmovavg (Vektor, s, lag, dim) gibt den einfachen gleitenden Durchschnitt für einen Vektor zurück. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Output tsmovavg (tsobj, e, timeperiod) gibt den exponentiellen gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1). Output tsmovavg (Vektor, e, timeperiod, dim) gibt den exponentiell gewichteten gleitenden Durchschnitt für einen Vektor zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. (2 / (Zeitabschnitt 1)). Ausgabe tsmovavg (tsobj, t, numperiod) gibt den dreieckigen gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (Vektor, t, numperiod, dim) gibt den dreieckigen gleitenden Durchschnitt für einen Vektor zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Output tsmovavg (tsobj, w, gewichte) liefert den gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj. Indem Gewichte für jedes Element in dem sich bewegenden Fenster bereitgestellt werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Ausgabe tsmovavg (Vektor, w, Gewichte, dim) gibt den gewichteten gleitenden Durchschnitt für den Vektor zurück, indem Gewichte für jedes Element in dem sich bewegenden Fenster geliefert werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Output tsmovavg (tsobj, m, numperiod) gibt den modifizierten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Ausgabe tsmovavg (Vektor, m, numperiod, dim) gibt den modifizierten gleitenden Durchschnitt für den Vektor zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Dim 8212 Dimension, um auf positive ganze Zahl mit dem Wert 1 oder 2 arbeiten Dimension zu arbeiten, als eine positive Ganzzahl mit einem Wert von 1 oder 2 angegeben. Dim ist ein optionales Eingabeargument, und wenn es nicht als eine Eingabe enthalten ist, die Standardeinstellung Wert 2 wird angenommen. Der Standardwert von dim 2 gibt eine zeilenorientierte Matrix an, wobei jede Zeile eine Variable ist und jede Spalte eine Beobachtung ist. Wenn dim 1. die Eingabe als Spaltenvektor oder spaltenorientierte Matrix angenommen wird, wobei jede Spalte eine Variable und jede Zeile eine Beobachtung ist. E 8212 Indikator für exponentiell gleitenden durchschnittlichen Charaktervektor Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei der Zeitabschnitt der Zeitraum des exponentiellen gleitenden Durchschnitts ist. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1) timeperiod 8212 Zeitdauer nonnegative integer Wählen Sie Ihr Land aus

Comments

Popular posts from this blog

Forex Gain Kapital

Forex Broker Bewertungen und Bewertungen Wie in den meisten anderen Arten von Unternehmen gibt es viele Betrügereien und Betrügereien im Forex-Markt begangen. Die meisten Strafverfolgungsbehörden, sowie Regulierungsbehörden, wissen alles über diese Betrügereien und ihre Herkunft. Aber denken Sie daran, nur durch den Kontakt mit allen Personen, die mit dem Betrug oder Betrug verbunden sind, werden Sie in der Lage, Ergebnisse zu erzielen. Ein steiler Anstieg der forex Betrug und Betrug wurde in den letzten Jahren gesehen. Forex Markt Händler würden immer von der Investition Betrug oder Betrügereien von Leuten in den Organisationen, die ausländische Währungen zu verkaufen hüten, sowie Makler, die sich mit Rohstoffen, die hohe Ansprüche, die Kunden buchstäblich verdienen können coole Menge ohne viel Risiko. Wenn das klingt wie eine falsche Versprechen - das ist wahrscheinlich, was es ist. In Amerika, USA Commodity Futures Trading Commission (CFTC) ist die Bundesbehörde, die den Handel in R...

Cara Mudah Untung Dalam Forex

Forex (Devisenhandel) ist die Bezeichnung für den Direktzugriffshandel von Fremdwährungen. Mit einem durchschnittlichen täglichen Volumen von 1,4 Billionen ist Forex 46 Mal größer als alle Futures-Märkte kombiniert und ist daher der weltweit liquideste Markt. In der Vergangenheit war der Devisenhandel weitgehend auf enorme Geld-Center-Banken und andere institutionelle Händler begrenzt. Aber in den letzten Jahren haben technologische Innovationen und die Entwicklung von Online-Handelsplattformen, wie die von dt FX, ermöglicht es kleinen Händlern, die Vorteile des Handels mit Fremdwährungen mit Forex zu nutzen. Foreign Exchange Devisenhandel (Forex) Trading ermöglicht es einem Anleger, an profitablen Schwankungen der Weltwährungen teilzunehmen. Forex Trading-Arbeiten durch die Auswahl von Währungspaaren und dann Messung der Gewinn oder Verlust durch die Schwankungen von einem einen Markt beeinträchtigen Marktaktivität im Vergleich zu den anderen. Zum Beispiel werden Schwankungen im Wert ...

Forex Blogger Templates

Vorlage ist ein kompletter Satz von einer Diagrammfensterkonfiguration einschließlich Indikatoren, Malwerkzeuge und Diagrammfarbschema. Sie können Vorlagen verwenden, um Ihre Tests einfacher und komfortabler zu machen. Wenn alle Einstellungen gespeichert sind, können Sie Ihre Vorlage speichern. Um die Vorlage zu speichern, gehen Sie wie folgt vor: 1. Klicken Sie auf View: 2. Wählen Sie Templates rarr Save Template. Oder klicken Sie mit der rechten Maustaste auf das Diagramm und wählen Sie Vorlagen rarr Vorlage speichern: 3. Geben Sie den Vorlagennamen ein und kreuzen Sie das erforderliche Element an, z. B. wie unten gezeigt: - Farbschema speichern: speichert das Farbschema, Weitere Farben des aktuellen Diagramms. - Grafik speichern: speichert alle grafischen Werkzeuge. - Indikatoren speichern: Alle ausgewählten Indikatoren werden gespeichert. Rarr es speichert die Farben des Diagramms, der Stäbe, des Gitters, etc. (Indikatoren werden nicht auf dem Diagramm angezeigt - nur Farbschema wi...